Cancer Therapy: Preclinical Radiation Enhancement of Head and Neck SquamousCellCarcinomaby theDualPI3K/mTOR Inhibitor PF-05212384

نویسندگان

  • Andrew J. Leiker
  • William
  • Rajani Choudhuri
  • Anastasia L. Sowers
  • Angela Thetford
  • John A. Cook
  • Carter Van Waes
  • James B. Mitchell
چکیده

Purpose: Radiation remains a mainstay for the treatment of nonmetastatic head and neck squamous cell carcinoma (HNSCC), a malignancy characterized by a high rate of PI3K/ mTOR signaling axis activation. We investigated the ATP-competitive dual PI3K/mTOR inhibitor, PF-05212384, as a radiosensitizer in preclinical HNSCC models. Experimental Design: Extent of radiation enhancement of two HNSCC cell lines (UMSCC1-wtP53 and UMSCC46mtP53) and normal human fibroblast (1522) was assessed by in vitro clonogenic assay with appropriate target inhibition verified by immunoblotting. Radiation-induced DNA damage repair was evaluated by gH2AX Western blots with the mechanism of DNA double-strand break repair abrogation investigated by cell cycle analysis, immunoblotting, and RT-PCR. PF-05212384 efficacy in vivo was assessed by UMSCC1 xenograft tumor regrowth delay, xenograft lysate immunoblotting, and tissue section immunohistochemistry. Results: PF-05212384 effectively inhibited PI3K and mTOR, resulting in significant radiosensitization of exponentially growing and plateau-phase cells with 24-hour treatment following irradiation, and variable radiation enhancement with 24-hour treatment before irradiation. Tumor cells radiosensitized to a greater extent than normal human fibroblasts. Postirradiation PF-05212384 treatment delays gH2AX foci resolution. PF05212384 24-hour exposure resulted in an evident G1–S phase block in p53-competent cells. Fractionated radiation plus i.v. PF05212384 synergistically delayed nude mice bearing UMSCC1 xenograft regrowth, with potential drug efficacy biomarkers identified, including pS6, pAkt, p4EBP1, and Ki67. Conclusions: Taken together, our results of significant radiosensitization both in vitro and in vivo validate the PI3K/mTOR axis as a radiationmodification target and PF-05212384 as a potential clinical radiation modifier of nonmetastatic HNSCC. Clin Cancer Res; 21(12); 2792–801. 2015 AACR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiation Enhancement of Head and Neck Squamous Cell Carcinoma by the Dual PI3K/mTOR Inhibitor PF-05212384.

PURPOSE Radiation remains a mainstay for the treatment of nonmetastatic head and neck squamous cell carcinoma (HNSCC), a malignancy characterized by a high rate of PI3K/mTOR signaling axis activation. We investigated the ATP-competitive dual PI3K/mTOR inhibitor, PF-05212384, as a radiosensitizer in preclinical HNSCC models. EXPERIMENTAL DESIGN Extent of radiation enhancement of two HNSCC cell...

متن کامل

Cancer Therapy: Preclinical MEK Inhibitor PD-0325901OvercomesResistance to PI3K/mTOR Inhibitor PF-5212384 and Potentiates Antitumor Effects in Human Head and Neck Squamous Cell Carcinoma

Purpose: Head and neck squamous cell carcinomas exhibit variable sensitivity to inhibitors of the PI3K/mTOR pathway, an important target of genomic alterations in this cancer type. The mitogen-activated protein kinase kinase (MEK)/ERK/activator protein 1 (AP-1) and nuclear factor-kB (NF-kB) pathways are also frequently co-activated, but their roles in resistance mechanisms to PI3K/mTOR inhibito...

متن کامل

Activity of Pan-Class I Isoform PI3K/mTOR Inhibitor PF-05212384 in Combination with Crizotinib in Ovarian Cancer Xenografts and PDX1

The Phosphatidyl inositol-3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and c-Met signaling pathways are often deregulated in cancer. The two pathways are interconnected and at least c-Met has been implicated in drug resistance. The aim of the study was to assess in ovarian cancer preclinical models, the efficacy and tolerability of a dual PI3K mTOR inhibitor (PF-05212384 or gedatoli...

متن کامل

MEK Inhibitor PD-0325901 Overcomes Resistance to PI3K/mTOR Inhibitor PF-5212384 and Potentiates Antitumor Effects in Human Head and Neck Squamous Cell Carcinoma.

PURPOSE Head and neck squamous cell carcinomas exhibit variable sensitivity to inhibitors of the PI3K/mTOR pathway, an important target of genomic alterations in this cancer type. The mitogen-activated protein kinase kinase (MEK)/ERK/activator protein 1 (AP-1) and nuclear factor-κB (NF-κB) pathways are also frequently co-activated, but their roles in resistance mechanisms to PI3K/mTOR inhibitor...

متن کامل

CCR-12-2716R2 4/3/13 PI3K-mTOR inhibitor PF-04691502 anti-tumor activity is enhanced with induction of wild-type TP53 in human xenograft and murine knockout models of head and neck cancer

Purpose: PI3K-mTOR pathway activation is often associated with altered expression or mutations of PIK3CA, TP53/p73, PTEN and TGFβR in head and neck squamous cell carcinomas (HNSCC). However, little is known about how these alterations affect response to PI3K-mTOR targeted agents. Experimental Design: In this preclinical study, PI3K-Akt-mTOR signaling was characterized in 9 HNSCC (UM-SCC) cell l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015